ConcurrentHashMap详解
1、ConcurrentHashMap-JDK1.7
底层原理
- 底层数据结构:
- JDK1.7 的底层采用 Segment 数组 + HashEntry 数组 + 链表,即把哈希桶切分成小数组(Segment ),每个小数组由 n 个 HashEntry 数组组成,每个HashEntry代表着一个链表的头结点,链表中每个
HashEntry
节点用于存储键值对数据。
- JDK1.7 的底层采用 Segment 数组 + HashEntry 数组 + 链表,即把哈希桶切分成小数组(Segment ),每个小数组由 n 个 HashEntry 数组组成,每个HashEntry代表着一个链表的头结点,链表中每个
- 实现线程安全的方式(重要):
- 在 JDK1.7 的时候,
ConcurrentHashMap
对整个桶数组进行了分段(Segment
),每个分段都有各自的锁(分段锁),每把锁只锁对应分段的数据,多线程访问容器里不同分段的数据,就不会存在锁竞争,提高并发访问率 - 简单理解就是,ConcurrentHashMap 是一个 Segment 数组,Segment 通过继承 ReentrantLock 来进行加锁,所以每次需要加锁的操作锁住的是一个 Segment,这样只要保证每个 Segment 是线程安全的,也就实现了全局的线程安全。
- 在 JDK1.7 的时候,
观察ConcurrentHashMap有参构造函数:
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel)
concurrencyLevel
:并行级别、并发数、Segment 数,怎么翻译不重要,理解它才是关键。默认是 16,也就是说 ConcurrentHashMap 默认有 16 个 Segments,所以理论上,这个时候最多可以同时支持 16 个线程并发写
,只要它们的操作分别分布在不同的 Segment 上。
这个值可以在初始化的时候可以指定,但是一旦初始化以后,Segment的数量不可以再扩容!
再具体到每个 Segment 内部,其实每个 Segment 很像之前介绍的 HashMap,不过它要保证线程安全,所以处理起来要麻烦些。
初始化
整个 ConcurrentHashMap 由一个个 Segment 组成,Segment 代表”部分“或”一段“的意思,所以很多地方都会将其描述为分段锁。
注意,行文中,我很多地方用了“槽”来代表一个 segment。
//initialCapacity:初始容量,这个值指的是整个 ConcurrentHashMap 的初始容量,实际操作的时候需要平均分给每个 Segment。
//loadFactor:负载因子,之前说了,Segment 数组不可以扩容,所以这个负载因子是给每个 Segment 内部使用的
//concurrencyLevel:Segment数,也就是能支持的最大并发写数量
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// Find power-of-two sizes best matching arguments
int sshift = 0;
int ssize = 1;
// 计算并行级别 ssize,因为要保持并行级别是 2 的 n 次方
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
// 我们这里先不要那么烧脑,用默认值,concurrencyLevel 为 16,sshift 为 4
// 那么计算出 segmentShift 为 28,segmentMask 为 15,后面会用到这两个值
this.segmentShift = 32 - sshift;
this.segmentMask = ssize - 1;
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// initialCapacity 是设置整个 map 初始的大小,
// 这里根据 initialCapacity 计算 Segment 数组中每个位置可以分到的大小
// 如 initialCapacity 为 64,那么每个 Segment 或称之为"槽"可以分到 4 个
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
// 默认 MIN_SEGMENT_TABLE_CAPACITY 是 2,这个值也是有讲究的,因为这样的话,对于具体的槽上,
// 插入一个元素不至于扩容,插入第二个的时候才会扩容
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
// 创建 Segment 数组,
// 并创建数组的第一个元素 segment[0]
Segment<K,V> s0 =
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
// 往数组写入 segment[0]
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}
初始化完成后,我们得到了一个 Segment 数组。
我们就当是用 new ConcurrentHashMap() 无参构造函数进行初始化,那么初始化完成后:
- Segment 数组长度为 16,不可以扩容
- Segment[i] 的默认大小为 2,负载因子是 0.75,得出初始阈值为 1.5,也就是以后插入第一个元素不会触发扩容,插入第二个会进行第一次扩容
- 这里初始化了 segment[0],其他位置还是 null,至于为什么要初始化 segment[0],后面的代码会介绍
- 当前 segmentShift 的值为 32 - 4 = 28,segmentMask 为 16 - 1 = 15,姑且把它们简单翻译为移位数和掩码,这两个值马上就会用到
put流程
先看 put 的主流程:
public V put(K key, V value) {
Segment<K,V> s;
if (value == null)
throw new NullPointerException();
// 1. 计算 key 的 hash 值
int hash = hash(key);
// 2. 根据 hash 值找到 Segment 数组中的位置 j
// hash 是 32 位,无符号右移 segmentShift(28) 位,剩下高 4 位,
// 然后和 segmentMask(15) 做一次与操作,也就是说 j 是 hash 值的高 4 位,也就是槽的数组下标
int j = (hash >>> segmentShift) & segmentMask;
// 刚刚说了,初始化的时候初始化了 segment[0],但是其他位置还是 null,
// ensureSegment(j) 对 segment[j] 进行初始化
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
// 3. 插入新值到 槽 s 中
return s.put(key, hash, value, false);
}
第一层皮很简单,根据 hash 值很快就能找到相应的 Segment,之后就是 Segment 内部的 put 操作了。
Segment 内部是由 数组+链表
组成的。
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
// 在往该 segment 写入前,需要先获取该 segment 的独占锁
// 先看主流程,后面还会具体介绍这部分内容
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
// 这个是 segment 内部的数组
HashEntry<K,V>[] tab = table;
// 再利用 hash 值,求应该放置的数组下标
int index = (tab.length - 1) & hash;
// first 是数组该位置处的链表的表头
HashEntry<K,V> first = entryAt(tab, index);
// 下面这串 for 循环虽然很长,不过也很好理解,想想该位置没有任何元素和已经存在一个链表这两种情况
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
// 覆盖旧值
e.value = value;
++modCount;
}
break;
}
// 继续顺着链表走
e = e.next;
}
else {
// node 到底是不是 null,这个要看获取锁的过程,不过和这里都没有关系。
// 如果不为 null,那就直接将它设置为链表表头;如果是null,初始化并设置为链表表头。
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
// 如果超过了该 segment 的阈值,这个 segment 需要扩容
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node); // 扩容后面也会具体分析
else
// 没有达到阈值,将 node 放到数组 tab 的 index 位置,
// 其实就是将新的节点设置成原链表的表头
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
// 解锁
unlock();
}
return oldValue;
}
整体流程还是比较简单的,由于有独占锁的保护,所以 segment 内部的操作并不复杂。
至于这里面的并发问题,我们稍后再进行介绍。
到这里 put 操作就结束了,接下来,我们说一说其中3个关键的操作:ensureSegment()、scanAndLockForPut()、reHash()。
初始化槽:ensureSegment()
ConcurrentHashMap 初始化的时候会初始化第一个槽 segment[0],对于其他槽来说,在插入第一个值的时候进行初始化。
这里需要考虑并发,因为很可能会有多个线程同时进来初始化同一个槽 segment[k],不过只要有一个成功了就可以。
下面我们来具体分析这个方法中是怎么初始化第一个槽的:
private Segment<K,V> ensureSegment(int k) {
final Segment<K,V>[] ss = this.segments;
long u = (k << SSHIFT) + SBASE; // raw offset
Segment<K,V> seg;
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
// 这里看到为什么之前要初始化 segment[0] 了,
// 使用当前 segment[0] 处的数组长度和负载因子来初始化 segment[k]
// 为什么要用“当前”,因为 segment[0] 可能早就扩容过了
Segment<K,V> proto = ss[0];
int cap = proto.table.length;
float lf = proto.loadFactor;
int threshold = (int)(cap * lf);
// 初始化 segment[k] 内部的数组
HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) { // 再次检查一遍该槽是否被其他线程初始化了。
Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
// 使用 while 循环,内部用 CAS,当前线程成功设值或其他线程成功设值后,退出
while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) {
if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
break;
}
}
}
return seg;
}
总的来说,ensureSegment(int k) 比较简单,对于并发操作使用 CAS 进行控制。
一开始我没搞懂这里为什么要搞一个 while 循环,CAS 失败不就代表有其他线程成功了吗,为什么要再进行判断呢?
答案:如果当前线程 CAS 失败,这里的 while 循环是为了将 seg 赋值返回。
获取写入锁:scanAndLockForPut()
前面我们看到,在往某个 segment 中 put 的时候,首先会调用 node = tryLock() ? null : scanAndLockForPut(key, hash, value),也就是说先进行一次 tryLock() 快速获取该 segment 的独占锁,如果失败,那么进入到 scanAndLockForPut 这个方法来获取锁。
下面我们来具体分析这个方法中是怎么控制加锁的:
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
HashEntry<K,V> node = null;
int retries = -1; // negative while locating node
// 循环获取锁
while (!tryLock()) {
HashEntry<K,V> f; // to recheck first below
if (retries < 0) {
if (e == null) {
if (node == null) // speculatively create node
// 进到这里说明数组该位置的链表是空的,没有任何元素
// 当然,进到这里的另一个原因是 tryLock() 失败,所以该槽存在并发,不一定是该位置
node = new HashEntry<K,V>(hash, key, value, null);
retries = 0;
}
else if (key.equals(e.key))
retries = 0;
else
// 顺着链表往下走
e = e.next;
}
// 重试次数如果超过 MAX_SCAN_RETRIES(单核1多核64),那么不抢了,进入到阻塞队列等待锁
// lock() 是阻塞方法,直到获取锁后返回
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
// 这个时候是有大问题了,那就是有新的元素进到了链表,成为了新的表头
// 所以这边的策略是,相当于重新走一遍这个 scanAndLockForPut 方法
(f = entryForHash(this, hash)) != first) {
e = first = f; // re-traverse if entry changed
retries = -1;
}
}
return node;
}
这个方法有两个出口,一个是 tryLock() 成功了,循环终止,另一个就是重试次数超过了 MAX_SCAN_RETRIES,进到 lock() 方法,此方法会阻塞等待,直到成功拿到独占锁。
这个方法就是看似复杂,但是其实就是做了一件事,那就是获取该 segment 的独占锁,如果需要的话顺便实例化了一下 node。
扩容: rehash()
重复一下,segment 数组不能扩容! 扩容是 segment 数组某个位置内部的数组 HashEntry<K,V>[] 进行扩容,扩容后,容量为原来的 2 倍。
首先,我们要回顾一下触发扩容的地方,put 的时候,如果判断该值的插入会导致该 segment 的元素个数超过阈值,那么先进行扩容,再插值,读者这个时候可以回去 put 方法看一眼。
该方法不需要考虑并发,因为到这里的时候,是持有该 segment 的独占锁的。
// 方法参数上的 node 是这次扩容后,需要添加到新的数组中的数据。
private void rehash(HashEntry<K,V> node) {
HashEntry<K,V>[] oldTable = table;
int oldCapacity = oldTable.length;
// 2 倍
int newCapacity = oldCapacity << 1;
threshold = (int)(newCapacity * loadFactor);
// 创建新数组
HashEntry<K,V>[] newTable =
(HashEntry<K,V>[]) new HashEntry[newCapacity];
// 新的掩码,如从 16 扩容到 32,那么 sizeMask 为 31,对应二进制 ‘000...00011111’
int sizeMask = newCapacity - 1;
// 遍历原数组,老套路,将原数组位置 i 处的链表拆分到 新数组位置 i 和 i+oldCap 两个位置
for (int i = 0; i < oldCapacity ; i++) {
// e 是链表的第一个元素
HashEntry<K,V> e = oldTable[i];
if (e != null) {
HashEntry<K,V> next = e.next;
// 计算应该放置在新数组中的位置,
// 假设原数组长度为 16,e 在 oldTable[3] 处,那么 idx 只可能是 3 或者是 3 + 16 = 19
int idx = e.hash & sizeMask;
if (next == null) // 该位置处只有一个元素,那比较好办
newTable[idx] = e;
else { // Reuse consecutive sequence at same slot
// e 是链表表头
HashEntry<K,V> lastRun = e;
// idx 是当前链表的头结点 e 的新位置
int lastIdx = idx;
// 下面这个 for 循环会找到一个 lastRun 节点,这个节点之后的所有元素是将要放到一起的
for (HashEntry<K,V> last = next;
last != null;
last = last.next) {
int k = last.hash & sizeMask;
if (k != lastIdx) {
lastIdx = k;
lastRun = last;
}
}
// 将 lastRun 及其之后的所有节点组成的这个链表放到 lastIdx 这个位置
newTable[lastIdx] = lastRun;
// 下面的操作是处理 lastRun 之前的节点,
// 这些节点可能分配在另一个链表中,也可能分配到上面的那个链表中
for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry<K,V> n = newTable[k];
newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
}
}
}
}
// 将新来的 node 放到新数组中刚刚的 两个链表之一 的 头部
int nodeIndex = node.hash & sizeMask; // add the new node
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
table = newTable;
}
这里的扩容比之前的 HashMap 要复杂一些,代码难懂一点。上面有两个挨着的 for 循环,第一个 for 有什么用呢?
仔细一看发现,如果没有第一个 for 循环,也是可以工作的,但是,这个 for 循环下来,如果 lastRun 的后面还有比较多的节点,那么这次就是值得的。因为我们只需要克隆 lastRun 前面的节点,后面的一串节点跟着 lastRun 走就是了,不需要做任何操作。
我觉得 Doug Lea(JUC作者) 的这个想法也是挺有意思的,不过比较坏的情况就是每次 lastRun 都是链表的最后一个元素或者很靠后的元素,那么这次遍历就有点浪费了。
不过 Doug Lea 也说了,根据统计,如果使用默认的阈值,大约只有 1/6 的节点需要克隆。
get流程
相对于 put 来说,get 真的太简单了:
- 计算 hash 值,找到 segment 数组中的具体位置,或我们前面用的“槽”
- 槽中也是一个数组,根据 hash 找到数组中具体的位置
- 到这里是链表了,顺着链表进行查找即可
public V get(Object key) {
Segment<K,V> s; // manually integrate access methods to reduce overhead
HashEntry<K,V>[] tab;
// 1\. hash 值
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
// 2\. 根据 hash 找到对应的 segment
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
// 3\. 找到segment 内部数组相应位置的链表,遍历
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}
并发问题分析
现在我们已经说完了 put 过程和 get 过程,我们可以看到 get 过程中是没有加锁的,那自然我们就需要去考虑并发问题。
添加节点的操作 put 和删除节点的操作 remove 都需要加 segment 上的独占锁,所以它们之间自然不会有问题,我们需要考虑的问题就是 get 的时候在同一个 segment 中发生了 put 或 remove 操作:
put 操作的线程安全性
- 初始化槽,这个我们之前就说过了,使用了 CAS 来初始化 Segment 中的数组。
- 添加节点到链表的操作采用头插法,所以,如果这个时候 get 操作在链表遍历的过程已经到了中间,是不会影响的。当然,另一个并发问题就是 get 操作在 put 之后,需要保证刚刚插入表头的节点被读取,这个依赖于 setEntryAt 方法中使用的 UNSAFE.putOrderedObject。
- 扩容。扩容是新创建了数组,然后进行迁移数据,最后面将 newTable 设置给属性 table。所以,如果 get 操作此时也在进行,那么也没关系,如果 get 先行,那么就是在旧的 table 上做查询操作;而 put 先行,那么 put 操作的可见性保证就是 table 使用了 volatile 关键字。
remove 操作的线程安全性
remove 操作我们没有分析源码,所以这里说的读者感兴趣的话还是需要到源码中去求实一下的。
get 操作需要遍历链表,但是 remove 操作会"破坏"链表。
如果 remove 破坏的节点 get 操作已经过去了,那么这里不存在任何问题。
如果 remove 先破坏了一个节点,分两种情况考虑:
- ①如果此节点是头结点,那么需要将头结点的 next 设置为数组该位置的元素,table 虽然使用了 volatile 修饰,但是 volatile 并不能提供数组内部操作的可见性保证,所以源码中使用了 UNSAFE 来操作数组,请看方法 setEntryAt。
- ②如果要删除的节点不是头结点,它会将要删除节点的后继节点接到前驱节点中,这里的并发保证就是 next 属性是 volatile 的。
2、ConcurrentHashMap-JDK1.8
底层原理
- 底层数据结构:
- JDK1.8 采用的数据结构跟
HashMap1.8
的结构一样,数组+链表/红黑二叉树。
- JDK1.8 采用的数据结构跟
- 实现线程安全的方式(重要):
- JDK1.8 已经抛弃了原有的 Segment 分段锁,采用
CAS + synchronized
实现更加低粒度的锁,将锁的级别控制在了更细粒度的哈希桶元素级别,也就是说只需要锁住这个链表头结点(红黑树的根节点),就不会影响其他的哈希桶元素的读写,大大提高了并发度。
- JDK1.8 已经抛弃了原有的 Segment 分段锁,采用
JDK1.7中,ConcurrentHashMap是通过分段锁机制来实现的,所以其最大并发度受Segment的个数限制。
因此,在JDK1.8中,ConcurrentHashMap的摒弃了这种设计,而是选择了与HashMap类似的数组+链表/红黑树的方式实现,而加锁则采用CAS和synchronized实现。
注意,Node
只能用于链表的情况,红黑树的情况需要使用 TreeBin
。
当链表长度超过一定阈值8
时将链表(时间复杂度为 O(N)
)转换为红黑树(时间复杂度为 O(log(N)
)。
初始化
public ConcurrentHashMap() {
}
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}
这个初始化方法有点意思,通过提供初始容量,计算了 sizeCtl,sizeCtl = 【 (1.5 * initialCapacity + 1),然后向上取最近的 2 的 n 次方】。
如 initialCapacity 为 10,那么得到 sizeCtl 为 16,如果 initialCapacity 为 11,得到 sizeCtl 为 32。
sizeCtl 这个属性使用的场景很多,不过只要跟着文章的思路来,就不会被它搞晕了。
如果你爱折腾,也可以看下另一个有三个参数的构造方法,这里我就不说了。
大部分时候,我们会使用无参构造函数进行实例化,下面我们也按照这个思路来进行源码分析!
put流程
仔细地一行一行看代码:
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
// 得到 hash 值
int hash = spread(key.hashCode());
// 用于记录相应链表的长度
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
// 如果数组"空",进行数组初始化
if (tab == null || (n = tab.length) == 0)
// 初始化数组,后面会详细介绍
tab = initTable();
// 找该 hash 值对应的数组下标,得到第一个节点 f
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 如果数组该位置为空,
// 用一次 CAS 操作将这个新值放入其中即可,这个 put 操作差不多就结束了,可以拉到最后面了
// 如果 CAS 失败,那就是有并发操作,进到下一个循环就好了
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// hash 居然可以等于 MOVED,这个需要到后面才能看明白,不过从名字上也能猜到,肯定是因为在扩容
else if ((fh = f.hash) == MOVED)
// 帮助数据迁移,这个等到看完数据迁移部分的介绍后,再理解这个就很简单了
tab = helpTransfer(tab, f);
else { // 到这里就是说,f 是该位置的头结点,而且不为空
V oldVal = null;
// 获取数组该位置的头结点的监视器锁
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) { // 头结点的 hash 值大于 0,说明是链表
// 用于累加,记录链表的长度
binCount = 1;
// 遍历链表
for (Node<K,V> e = f;; ++binCount) {
K ek;
// 如果发现了"相等"的 key,判断是否要进行值覆盖,然后也就可以 break 了
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
// 到了链表的最末端,将这个新值放到链表的最后面
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) { // 红黑树
Node<K,V> p;
binCount = 2;
// 调用红黑树的插值方法插入新节点
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 判断是否要将链表转换为红黑树,临界值和 HashMap 一样,也是 8
if (binCount >= TREEIFY_THRESHOLD)
// 这个方法和 HashMap 中稍微有一点点不同,那就是它不是一定会进行红黑树转换,
// 如果当前数组的长度小于 64,那么会选择进行数组扩容,而不是转换为红黑树
// 具体源码我们就不看了,扩容部分后面说
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
//
addCount(1L, binCount);
return null;
}
到这里 put 操作就结束了,接下来,我们说一说其中3个关键的操作:initTable()、treeifyBin()、tryPresize()、transfer()。
初始化数组:initTable
这个比较简单,主要就是初始化一个合适大小的数组,然后会设置 sizeCtl。
初始化方法中的并发问题是通过对 sizeCtl 进行一个 CAS 操作来控制的。
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
// 初始化的"功劳"被其他线程"抢去"了
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
// CAS 一下,将 sizeCtl 设置为 -1,代表抢到了锁
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
// DEFAULT_CAPACITY 默认初始容量是 16
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
// 初始化数组,长度为 16 或初始化时提供的长度
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
// 将这个数组赋值给 table,table 是 volatile 的
table = tab = nt;
// 如果 n 为 16 的话,那么这里 sc = 12
// 其实就是 0.75 * n
sc = n - (n >>> 2);
}
} finally {
// 设置 sizeCtl 为 sc,我们就当是 12 吧
sizeCtl = sc;
}
break;
}
}
return tab;
}
链表转红黑树: treeifyBin
前面我们在 put 源码分析也说过,treeifyBin 不一定就会进行红黑树转换,也可能是仅仅做数组扩容。我们还是进行源码分析吧。
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
// MIN_TREEIFY_CAPACITY 为 64
// 所以,如果数组长度小于 64 的时候,其实也就是 32 或者 16 或者更小的时候,会进行数组扩容
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
// 后面我们再详细分析这个方法
tryPresize(n << 1);
// b 是头结点
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
// 加锁
synchronized (b) {
if (tabAt(tab, index) == b) {
// 下面就是遍历链表,建立一颗红黑树
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
// 将红黑树设置到数组相应位置中
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
扩容:tryPresize
如果说 Java8 ConcurrentHashMap 的源码不简单,那么说的就是扩容操作和迁移操作。
这个方法要完完全全看懂还需要看之后的 transfer 方法,读者应该提前知道这点。
这里的扩容也是做翻倍扩容的,扩容后数组容量为原来的 2 倍。
// 首先要说明的是,方法参数 size 传进来的时候就已经翻了倍了
private final void tryPresize(int size) {
// c:size 的 1.5 倍,再加 1,再往上取最近的 2 的 n 次方。
int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
tableSizeFor(size + (size >>> 1) + 1);
int sc;
while ((sc = sizeCtl) >= 0) {
Node<K,V>[] tab = table; int n;
// 这个 if 分支和之前说的初始化数组的代码基本上是一样的,在这里,我们可以不用管这块代码
if (tab == null || (n = tab.length) == 0) {
n = (sc > c) ? sc : c;
if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if (table == tab) {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = nt;
sc = n - (n >>> 2); // 0.75 * n
}
} finally {
sizeCtl = sc;
}
}
}
else if (c <= sc || n >= MAXIMUM_CAPACITY)
break;
else if (tab == table) {
// 我没看懂 rs 的真正含义是什么,不过也关系不大
int rs = resizeStamp(n);
if (sc < 0) {
Node<K,V>[] nt;
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// 2\. 用 CAS 将 sizeCtl 加 1,然后执行 transfer 方法
// 此时 nextTab 不为 null
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
// 1\. 将 sizeCtl 设置为 (rs << RESIZE_STAMP_SHIFT) + 2)
// 我是没看懂这个值真正的意义是什么?不过可以计算出来的是,结果是一个比较大的负数
// 调用 transfer 方法,此时 nextTab 参数为 null
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
}
}
}
这个方法的核心在于 sizeCtl 值的操作,首先将其设置为一个负数,然后执行 transfer(tab, null),再下一个循环将 sizeCtl 加 1,并执行 transfer(tab, nt),之后可能是继续 sizeCtl 加 1,并执行 transfer(tab, nt)。
所以,可能的操作就是执行 1 次 transfer(tab, null) + 多次 transfer(tab, nt),这里怎么结束循环的需要看完 transfer 源码才清楚。
数据迁移:transfer
下面这个方法有点长,将原来的 tab 数组的元素迁移到新的 nextTab 数组中。
虽然我们之前说的 tryPresize 方法中多次调用 transfer 不涉及多线程,但是这个 transfer 方法可以在其他地方被调用,典型地,我们之前在说 put 方法的时候就说过了,请往上看 put 方法,是不是有个地方调用了 helpTransfer 方法,helpTransfer 方法会调用 transfer 方法的。
此方法支持多线程执行,外围调用此方法的时候,会保证第一个发起数据迁移的线程,nextTab 参数为 null,之后再调用此方法的时候,nextTab 不会为 null。
阅读源码之前,先要理解并发操作的机制。原数组长度为 n,所以我们有 n 个迁移任务,让每个线程每次负责一个小任务是最简单的,每做完一个任务再检测是否有其他没做完的任务,帮助迁移就可以了,而 Doug Lea 使用了一个 stride,简单理解就是步长,每个线程每次负责迁移其中的一部分,如每次迁移 16 个小任务。所以,我们就需要一个全局的调度者来安排哪个线程执行哪几个任务,这个就是属性 transferIndex 的作用。
第一个发起数据迁移的线程会将 transferIndex 指向原数组最后的位置,然后从后往前的 stride 个任务属于第一个线程,然后将 transferIndex 指向新的位置,再往前的 stride 个任务属于第二个线程,依此类推。当然,这里说的第二个线程不是真的一定指代了第二个线程,也可以是同一个线程,这个读者应该能理解吧。其实就是将一个大的迁移任务分为了一个个任务包。
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
// stride 在单核下直接等于 n,多核模式下为 (n>>>3)/NCPU,最小值是 16
// stride 可以理解为”步长“,有 n 个位置是需要进行迁移的,
// 将这 n 个任务分为多个任务包,每个任务包有 stride 个任务
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
// 如果 nextTab 为 null,先进行一次初始化
// 前面我们说了,外围会保证第一个发起迁移的线程调用此方法时,参数 nextTab 为 null
// 之后参与迁移的线程调用此方法时,nextTab 不会为 null
if (nextTab == null) {
try {
// 容量翻倍
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
// nextTable 是 ConcurrentHashMap 中的属性
nextTable = nextTab;
// transferIndex 也是 ConcurrentHashMap 的属性,用于控制迁移的位置
transferIndex = n;
}
int nextn = nextTab.length;
// ForwardingNode 翻译过来就是正在被迁移的 Node
// 这个构造方法会生成一个Node,key、value 和 next 都为 null,关键是 hash 为 MOVED
// 后面我们会看到,原数组中位置 i 处的节点完成迁移工作后,
// 就会将位置 i 处设置为这个 ForwardingNode,用来告诉其他线程该位置已经处理过了
// 所以它其实相当于是一个标志。
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
// advance 指的是做完了一个位置的迁移工作,可以准备做下一个位置的了
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
/*
* 下面这个 for 循环,最难理解的在前面,而要看懂它们,应该先看懂后面的,然后再倒回来看
*
*/
// i 是位置索引,bound 是边界,注意是从后往前
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
// 下面这个 while 真的是不好理解
// advance 为 true 表示可以进行下一个位置的迁移了
// 简单理解结局:i 指向了 transferIndex,bound 指向了 transferIndex-stride
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
// 将 transferIndex 值赋给 nextIndex
// 这里 transferIndex 一旦小于等于 0,说明原数组的所有位置都有相应的线程去处理了
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
// 看括号中的代码,nextBound 是这次迁移任务的边界,注意,是从后往前
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {
// 所有的迁移操作已经完成
nextTable = null;
// 将新的 nextTab 赋值给 table 属性,完成迁移
table = nextTab;
// 重新计算 sizeCtl:n 是原数组长度,所以 sizeCtl 得出的值将是新数组长度的 0.75 倍
sizeCtl = (n << 1) - (n >>> 1);
return;
}
// 之前我们说过,sizeCtl 在迁移前会设置为 (rs << RESIZE_STAMP_SHIFT) + 2
// 然后,每有一个线程参与迁移就会将 sizeCtl 加 1,
// 这里使用 CAS 操作对 sizeCtl 进行减 1,代表做完了属于自己的任务
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
// 任务结束,方法退出
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
// 到这里,说明 (sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT,
// 也就是说,所有的迁移任务都做完了,也就会进入到上面的 if(finishing){} 分支了
finishing = advance = true;
i = n; // recheck before commit
}
}
// 如果位置 i 处是空的,没有任何节点,那么放入刚刚初始化的 ForwardingNode ”空节点“
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
// 该位置处是一个 ForwardingNode,代表该位置已经迁移过了
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
// 对数组该位置处的结点加锁,开始处理数组该位置处的迁移工作
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
// 头结点的 hash 大于 0,说明是链表的 Node 节点
if (fh >= 0) {
// 下面这一块和 Java7 中的 ConcurrentHashMap 迁移是差不多的,
// 需要将链表一分为二,
// 找到原链表中的 lastRun,然后 lastRun 及其之后的节点是一起进行迁移的
// lastRun 之前的节点需要进行克隆,然后分到两个链表中
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
// 其中的一个链表放在新数组的位置 i
setTabAt(nextTab, i, ln);
// 另一个链表放在新数组的位置 i+n
setTabAt(nextTab, i + n, hn);
// 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,
// 其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了
setTabAt(tab, i, fwd);
// advance 设置为 true,代表该位置已经迁移完毕
advance = true;
}
else if (f instanceof TreeBin) {
// 红黑树的迁移
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
// 如果一分为二后,节点数少于 8,那么将红黑树转换回链表
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
// 将 ln 放置在新数组的位置 i
setTabAt(nextTab, i, ln);
// 将 hn 放置在新数组的位置 i+n
setTabAt(nextTab, i + n, hn);
// 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,
// 其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了
setTabAt(tab, i, fwd);
// advance 设置为 true,代表该位置已经迁移完毕
advance = true;
}
}
}
}
}
}
说到底,transfer 这个方法并没有实现所有的迁移任务,每次调用这个方法只实现了 transferIndex 往前 stride 个位置的迁移工作,其他的需要由外围来控制。
这个时候,再回去仔细看 tryPresize 方法可能就会更加清晰一些了。
get 流程
get 方法从来都是最简单的,这里也不例外:
- 计算 hash 值
- 根据 hash 值找到数组对应位置: (n - 1) & h
- 根据该位置处结点性质进行相应查找:
- 如果该位置为 null,那么直接返回 null 就可以了
- 如果该位置处的节点刚好就是我们需要的,返回该节点的值即可
- 如果该位置节点的 hash 值小于 0,说明正在扩容,或者是红黑树,后面我们再介绍 find 方法
- 如果以上 3 条都不满足,那就是链表,进行遍历比对即可
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 判断头结点是否就是我们需要的节点
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// 如果头结点的 hash 小于 0,说明 正在扩容,或者该位置是红黑树
else if (eh < 0)
// 参考 ForwardingNode.find(int h, Object k) 和 TreeBin.find(int h, Object k)
return (p = e.find(h, key)) != null ? p.val : null;
// 遍历链表
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
简单说一句,此方法的大部分内容都很简单,只有正好碰到扩容的情况,ForwardingNode.find(int h, Object k) 稍微复杂一些,不过在了解了数据迁移的过程后,这个也就不难了,所以限于篇幅这里也不展开说了。
3、HashTable为什么慢呢?
ConcurrentHashMap 的效率要高于Hashtable,因为Hashtable给整个哈希表加了一把大锁从而实现线程安全。
而ConcurrentHashMap 的锁粒度更低,在JDK1.7中采用分段锁实现线程安全,在JDK1.8 中采用CAS+Synchronized
实现线程安全。
Hashtable是使用Synchronized来实现线程安全的,给整个哈希表加了一把大锁,多线程访问时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞等待需要的锁被释放,在竞争激烈的多线程场景中性能就会非常差!
4、ConcurrentHashMap 的 get 方法没有加锁,为什么?
因为 Node 的元素 val 和指针 next 是用 volatile 修饰的,在多线程环境下线程A修改结点的val或者新增节点的时候是对线程B可见的。
这也是它比其他并发集合比如 Hashtable、用 Collections.synchronizedMap()包装的 HashMap 安全效率高的原因之一。
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
//可以看到这些都用了volatile修饰
volatile V val;
volatile Node<K,V> next;
}
5、ConcurrentHashMap 不支持 key 或 value 为 null 的原因?
我们先来说value 为什么不能为 null :因为ConcurrentHashMap
是用于多线程的 ,如果map.get(key)
得到了 null ,无法判断,是映射的value是 null ,还是没有找到对应的key而为 null ,这就有了二义性!
我们用反证法推理证明:
假设ConcurrentHashMap 允许存放值为 null 的value,这时有A、B两个线程,线程A调用ConcurrentHashMap .get(key)方法,返回为 null ,我们不知道这个 null 是没有映射的 null ,还是存的值就是 null 。
假设此时,返回为 null 的真实情况是没有找到对应的key。那么,我们可以用ConcurrentHashMap .containsKey(key)来验证我们的假设是否成立,我们期望的结果是返回false。
假设ConcurrentHashMap 允许存放值为 null 的value,这时有A、B两个线程,线程A调用ConcurrentHashMap .get(key)方法,返回为 null ,我们不知道这个 null 是没有映射的 null ,还是存的值就是 null 。
假设此时,返回为 null 的真实情况是没有找到对应的key。那么,我们可以用ConcurrentHashMap .containsKey(key)来验证我们的假设是否成立,我们期望的结果是返回false。
但是在我们调用ConcurrentHashMap .get(key)方法之后,containsKey方法之前,线程B执行了ConcurrentHashMap .put(key, null )的操作。那么我们调用containsKey方法返回的就是true了,这就与我们的假设的真实情况不符合了,这就有了二义性!
至于key为什么也不能为 null 的问题:源码就是这样写的,哈哈。如果面试官不满意,就回答因为作者Doug Lea不喜欢 null ,所以在设计之初就不允许了 null 的key存在!
想要深入了解的小伙伴,可以看这篇文章:这道面试题我真不知道面试官想要的回答是什么
6、ConcurrentHashMap 的并发度是多少?
在JDK1.7中,并发度默认是16,这个值可以在构造函数中设置。
如果自己设置了并发度,ConcurrentHashMap 会使用大于等于该值的最小的2的幂指数作为实际并发度,也就是比如你设置的值是17
,那么实际并发度是32
!
7、ConcurrentHashMap 的迭代器是弱一致性的?
与HashMap迭代器是强一致性不同,ConcurrentHashMap 迭代器是弱一致性。
我们在使用HashMap迭代的时候,如果在迭代中做了remove处理,那么迭代下一个元素的时候会抛出ConcurrentModificationException
异常,这是HashMap的fail-fast机制。其实就是维护了一个修改次数,当增删改操作的时候,修改次数会加一。所以迭代时候获取下一个元素的时候,如果发现此修改次数和原本不一致,则抛异常。
但是ConcurrentHashMap是不会抛异常的,ConcurrentHashmap没有使用fail-fast,使用了弱一致性机制!
ConcurrentHashMap 的迭代器创建后,就会按照哈希表结构遍历每个元素,但在遍历过程中,内部元素可能会发生变化。
如果变化发生在已遍历过的部分,迭代器就不会反映出来,而如果变化发生在未遍历过的部分,迭代器就会发现并反映出来,这就是弱一致性。
这样迭代器线程可以使用原来老的数据,而写线程也可以并发的完成改变,更重要的,这保证了多个线程并发执行的连续性和扩展性,是性能提升的关键。
总之,ConcurrentHashMap的弱一致性主要是为了提升效率,是一致性与效率之间的一种权衡。要成为强一致性,就得到处使用锁,甚至是全局锁,这就与Hashtable和同步的HashMap一样了!